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Introduction

� Spectrum of multi-gigabit digital signals falls into the microwave 

frequency range (1-40 GHz)

� Microwave theory has to be used for analysis of interconnects

� Interconnects can be described as multiports

� Multiport parameters can be computed or measured

� Computed and measured multiport parameters are usually band-

limited and may be defective – we need to distinguish good from bad

� The goal of this tutorial is to: 

� Cover some basics of the multiport theory

� Introduce quality metrics for multiport parameters and illustrate it 

with practical examples
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Multiport parameters in general

� Multiport is a natural and scalable black-box description of linear time-invariant systems 

that are smaller, comparable with, or larger than wavelength

� Multiport parameters are typically available as tabulated output of electromagnetic 

simulators as well as Vector Network Analyzers (VNA) and Time-Domain Network 

Analyzers (TDNA)

� Multiport parameters of interconnects have to be reciprocal, passive, causal 

and corresponding time-domain models must be stable

[ ]S

[ ]Z

[ ]Y

Immitance 
Parameters



5 points to learn about multiport parameters

1. Reciprocity property of multiports

2. Passivity of multiports with band-limited response

3. Effect of geometrical symmetry

4. Bandwidth and sampling in frequency domain

5. Multiport macro-models for consistent frequency and 

time-domain analyses
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Linear algebra

� Linear algebra and complex analysis form the foundation of the 

multiport theory and help to estimate the multiport parameters 

goodness

� There are two types of objects in linear algebra: scalars and vectors

� Scalars – just real or complex numbers

� Vectors – objects that have direction and magnitude and usually defined 

by one-dimensional arrays of real or complex numbers or functions

� Currents, voltages, and waves can be described as scalars or vectors 

� Matrices - linear transformations of vectors are usually defined by 

two-dimensional arrays of real or complex numbers or functions 

� Multiports can be described with impedance, admittance or scattering 

matrices (descriptors)
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See basic definitions in references and backup slides



Some matrix operations

� Transposition – rows become columns

� Hermitian-adjoint

(Hermitian-conjugate)

� Symmetric matrix: 

� Hermitian matrix (self-adjoint): 

� Transposition of a product:

� Hermitian-adjoint  of a product:

� Inversion of product:

� Two N by N matrices do not commute in general:
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1,1 1,2 1,3 1,4

4 42,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

,

A A A A
A A A A

A A C
A A A A
A A A A

×

 
 

= ∈ 
 
 

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

t

A A A A
A A A A

A
A A A A
A A A A

 
 

=  
 
 

* * * *

1,1 2,1 3,1 4,1
* * * *

* 1,2 2,2 3,2 4,2
* * * *

1,3 2,3 3,3 4,3
* * * *

1,4 2,4 3,4 4,4

A A A A

A A A A
A

A A A A

A A A A

 
 

=  
 
  

, ,

t

i j j iA A or A A= =
* *

, ,i j j iA A or A A= =

( )t t tA B B A⋅ = ⋅

complex-conjugate 
and transposed

( )* * *A B B A⋅ = ⋅

( ) 1 1 1A B B A
− − −⋅ = ⋅

A B B A⋅ ≠ ⋅



Eigenvalues and singular values

� An eigenvalue and eigenvector of a square matrix A are a scalar    and a 

nonzero vector x so that

� A singular value and pair of singular vectors of a square or rectangular 

matrix A are a nonnegative scalar and two nonzero vectors u and v so 

that

2/8/2010 © 2009 Simberian Inc. 10

A x xλ⋅ = ⋅

λ

A x xλ⋅ = ⋅

x

σ

A v uσ⋅ = ⋅
*A u vσ⋅ = ⋅

( ) 0A I xλ− ⋅ ⋅ = ( )det 0A Iλ− ⋅ = - characteristic polynomial

( )* 2det 0A A Iσ⋅ − ⋅ = - a polynomial to find singular 
values

*A u vσ⋅ = ⋅

v
A v uσ⋅ = ⋅

u

distance to zero matrix

matrix characteristic values



Decomposition and diagonalization

� Eigenvalue decomposition (only if all eigenvectors are linearly independent)

� Singular value decomposition (exists always)
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, � �

i i iA x x A Cλ ×⋅ = ⋅ ∈

[ ]1 2, ,..., �X x x x=

[ ]1 2, ,..., �diag λ λ λΛ =
A X X⋅ = ⋅Λ

1X A X−Λ = ⋅ ⋅

1A X X −= ⋅Λ ⋅

diagonal form:

, � M

n n nA v u A Cσ ×⋅ = ⋅ ∈
*

m m mA u vσ⋅ = ⋅

[ ]1 2, ,..., MU u u u=

[ ]1 2, ,..., �V v v v=

( )1 2 min ,
, ,...,

� M
diag σ σ σ Σ =  

* t

A V U

A U V

⋅ = ⋅Σ

⋅ = ⋅Σ

*A U V= ⋅Σ ⋅
*U U I⋅ =
*V V I⋅ =

diagonal form:
*U A VΣ = ⋅ ⋅

(SVD)

(EVD)



Formulas useful for passivity concept

� Hermitian matrix diagonalization with unitary matrix

� Matrices                       are Hermitian

� Eigen-values of         and singular values of matrix A

� Singular values of symmetric matrix are equal to 

magnitudes of eigenvalues
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* * * * * *tA A V U U V V V V V⋅ = ⋅Σ ⋅ ⋅ ⋅Σ ⋅ = ⋅Σ ⋅Σ ⋅ = ⋅Λ ⋅

* *A A and A A⋅ ⋅

* *,H X X X X I= ⋅Λ ⋅ ⋅ = eigenvalues are real

Eigenvalues are real positive and equal to 
squares of singular values

*A A⋅



Quadratic forms (energy)

� Quadratic form is a homogeneous polynomial of degree two in a 

number of variables – example with two real variables:

� For complex variables in general:

If H is Hermitian matrix it can be diagonalized as:

In new basis, the quadratic form becomes diagonal:

It is not negative for all x if eigenvalues of H are not negative!
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( ) 2 2,q x y a x b x y c y= ⋅ + ⋅ ⋅ + ⋅ or ( ) [ ] 0.5
, ,

0.5
a b x

q x y x y
b c y

⋅   = ⋅ ⋅      

( ) * *

,

, 1

�

i j i j

i j

q x H x x x H x
=

= ⋅ ⋅ = ⋅ ⋅∑

* *,X H X X X IΛ = ⋅ ⋅ ⋅ =

( )
2

* * '

, 1

�

i i

i j

q x x X X x xλ
=

= ⋅ ⋅Λ ⋅ ⋅ = ⋅∑
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Impedance and admittance parameters

( ) ( )1 1

1 2 1 2

1 1

Equivalent currents and voltages at ports:

, , , ,..., , , ,...,

Impedance parameters: ,

Admittance parameters: ,

Conversion: ,

t t� �

� �

� �

� �

I C V C I I I I V V V V

V Z I Z C

I Y V Y C

Y Z Z Y

× ×

×

×

− −

∈ ∈ = =

= ⋅ ∈

= ⋅ ∈

= =

� Matrix elements may have large dynamic range

� Difficult to measure directly at high frequencies (difficult to re-calculate I and V 
from one location to another)

� Convenient for analysis of circuits and power distribution systems (PDNs)

1I

1V -
+

01Z

2I

2V -
+

02Z

�I

�V -

+

0�Z

[ ] [ ]Z or Y
.

.

.

- +

- +

- +

Port 1

Port 2

Port N

1I

2I

�I

1�C ×
space of column-vectors with N complex elements

� �C ×
space of complex NxN matrices



Finding columns of impedance matrix
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To find elements of a column 1 for instance:
1.Connect current source to port 1 and leave all 
other ports open-circuited (zero current) 
2.Measure voltages at all ports
3.The ratios of voltages and current at port 1 
produces one column of matrix Z
4.Repeat for all ports to fill Z

All possible voltages are defined by linear 
combination of columns of Z (they are in the 
column-space of Z)

1I

1V -
+

2V -
+

�V -

+

[ ]Z

Port 1

Port 2

Port N

1I

,1

1 0 1k

i
i

I k

V
Z

I
= ≠

=

1I

Z is “open-circuit” matrix



Finding columns of admittance matrix
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To find elements of a column 1 for instance:
1.Connect voltage source to port 1 and leave all 
other ports short-circuited (zero voltage) 
2.Measure currents at all ports
3.The ratios of currents and voltage at port 1 
produces one column of matrix Y
4.Repeat for all ports to fill Y

All possible currents are defined by linear 
combination of columns of Y (they are in the 
column-space of Y)

1I

1V -
+

2I

�I

[ ]Y

- +
Port 1

Port 2

Port N

1I

2I

�I

,1

1 0 1k

i
i

V k

I
Y

V
= ≠

=

1V
Y is “short-circuit” matrix



Reciprocity
� Linear circuits with reciprocal materials are reciprocal according to Lorentz’s 

theorem of reciprocity: 

Current observed at port 2 with voltage source at port 1 is equal to current 

observed at port 1 with the same voltage source at port 2 (same with 

current sources and observed voltages)

� In general it means that the admittance and impedance matrices are 

symmetric:
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, ,

t

i j j iZ Z or Z Z= =, ,

t

i j j iY Y or Y Y= =

I

I

V

2 0V =

[ ]Y

I

I

V

1 0V =

[ ]Y 1,2I Y V= ⋅2,1I Y V= ⋅ 2,1 1,2Y Y=

for all frequencies



Passivity

� Power transmitted to multiport

must be positive for passive structures

(no energy generated for any V or I)

� Hermitian quadratic form is non-negative (Golub & Van Loan):

� Reciprocal systems with symmetric matrices:
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* * *1
Re

2
inP I V I V V I   = ⋅ = ⋅ + ⋅   

1I

1V -
+

01Z

2I

2V -
+

02Z

�I

�V -

+

0�Z

[ ] [ ]Z or Y
.

.

.

- +

- +

- +

Port 1

Port 2

Port N

1I

2I

�I

* * * *1 1

2 2
inP I Z Z I V Y Y V      = ⋅ + ⋅ = ⋅ + ⋅      

* 0iff eigenvals Z Z + ≥ 
* 0iff eigenvals Y Y + ≥ or

( )Re 0iff eigenvals Y ≥  ( )Re 0iff eigenvals Z ≥   or

Conditions are sufficient if verified at all frequencies (from DC to infinity)



Example: T-circuit, two-port
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1
I

1
V

2
I1z 2z

3z 2
V

2

1
1,1

1 0

1 3

I

V
Z z z

I
=

= = +

1

2
2,2

2 0

2 3

I

V
Z z z

I
=

= = +
1

1
1,2

2 0

3

I

V
Z z

I
=

= =

2

2
2,1

1 0

3

I

V
Z z

I
=

= =
1I

1V

2 0I =1z 2z

3z 2V

1I

z1, z2, z3 are 
complex 
impedances

2 21 3 3
,

3 2 3
z z z

Z Z C
z z z

×+ = ∈+  

1 0I =

1V

2I1z 2z

3z 2V

2I

( )Re 0eigenvals Z ≥  Passivity:

1 1 2 3 3
3 1 31 2 1 3 2 3

z z z
Y Z

z z zz z z z z z

− + − = = − +  ⋅ + ⋅ + ⋅

( )Re 0eigenvals Y ≥  Passivity:

Both Z and Y are always 
symmetric (reciprocal)!

Always satisfied for nets composed of R,L,C

Reciprocal



Example: PI-circuit, two-port
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1
I

1
V

2
I

1y

3y

2y
2
V

2

1
1,1

1 0

1 3

V

I
Y y y

V
=

= = +

1

2
2,2

2 0

2 3

V

I
Y y y

V
=

= = +
1

1
1,2

2 0

3

V

I
Y y

V
=

= = −

2

2
2,1

1 0

3

V

I
Y y

V
=

= = −
1I

1V

2I

2 0V =

1V

1y

3y

2y

y1, y2, y3 are 
complex 
admittances

2 21 3 3
,

3 2 3
y y y

Y Y C
y y y

×+ − = ∈− +  

1I

1 0V =

2I

2V

2V

1y

3y

2y

( )Re 0eigenvals Y ≥  Passivity:

1 1 2 3 3
3 1 31 2 1 3 2 3

y y y
Z Y

y y yy y y y y y

− + = = +  ⋅ + ⋅ + ⋅

( )Re 0eigenvals Z ≥  Passivity:

Both Z and Y are always 
symmetric (reciprocal)!

Always satisfied for nets composed of R,L,C

Reciprocal
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Waves in transmission lines

i
v+

v−+v
-

Current and voltage at 
location x along the line

can be expressed 
through voltage waves

( ) ( ) ( )

( ) ( ) ( )
0

exp exp

1
exp exp

v x v x v x

i x v x v x
Z

+ −

+ −

= ⋅ −Γ ⋅ + ⋅ Γ ⋅

 = ⋅ −Γ ⋅ − ⋅ Γ ⋅ 

( ) ( ) ( )0Z z yω ω ω=

( ) ( ) ( )z yω ω ωΓ = ⋅

x x

Complex characteristic impedance and propagation 
constant can be computed with per unit length 
impedance (z) and admittance (y) of t-line

Voltage or current waves are solutions of homogeneous 
Telegrapher’s equations both in frequency and time domain

See generalized transmission line theory in references and backup slides



Scattering parameters definition through 

transmission line waves
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1I

1V -
+

01Z

2I

2V -
+

02Z

�I

�V -

+
0�Z

[ ]S.

.

.

1a

1b

2a

2b

�a

�b

1I

2I

�I

Port 1

Port 2

Port N

Waves in 

transmission lines

( ) ( )

( ) ( )

0

0
0 0

exp exp

1 1
exp exp

n n n n n n nx

n n n n n n nx
n n

V v x v x v v

I v x v x v v
Z Z

+ − + −

=

+ − + −

=

 = ⋅ Γ ⋅ + ⋅ Γ ⋅ = + 

   = ⋅ −Γ ⋅ − ⋅ Γ ⋅ = −   

( ) ( )1/ 2 1/ 2 1

0 0 0 0

0 0

1 1
, , ,

2 2

{ , 1,..., }

�

� �

i

a Z V Z I b Z V Z I a b C

Z diag Z i � C

− − ×

×

= ⋅ + ⋅ = ⋅ − ⋅ ∈

= = ∈

0 0

1 1
,n n n n

n n

a v b v
Z Z

+ −= ⋅ = ⋅

Instead of voltages and currents in t-lines:

New variables can be introduced by scaling of voltage 
waves (normalization):

( ) ( )2 2

2 2

0 0

,
n n

n n n n

n n

v v
P a P b

Z Z

+ −

+ −= = = =

Incident and 
reflected waves

Power transmitted by 
incident and reflected waves:

, � �b S a S C ×= ⋅ ∈are related by scattering matrix

Incident and reflected wave vectors:
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Scattering parameters formal definition

( ) ( )1/ 2 1/ 2 1

0 0 0 0

0 0

Incident and reflected waves may be defined formally:

1 1
, , ,

2 2

{ , 1,..., }

Scattering matrix defines reflected waves for any incident:

,

�

� �

i

� �

a Z V Z I b Z V Z I a b C

Z diag Z i � C

b S a S C

− − ×

×

×

= ⋅ + ⋅ = ⋅ − ⋅ ∈

= = ∈

= ⋅ ∈

1I

1V -
+

01Z

2I

2V -
+

02Z

�I

�V -

+

0�Z

[ ]S.

.

.

1a

1b

2a

2b

�a

�b

+-

+-

+-

1I

2I

�I

Port 1

Port 2

Port N

( ) ( )

( ) ( )

1 1/ 2 1/ 2

0 0

1 1/ 2 1/ 2

0 0

,

,

� � �

� � �

S U Y U Y Y Z Y Z

S Z U U Z Z Z Z Z

−

− − −

= − ⋅ + = ⋅ ⋅

= − ⋅ + = ⋅ ⋅

S-matrix can be expressed through admittance or 
impedance matrices (Cayley transforms):

normalized 
immitance 
parameters

normalization impedances

U is unit matrix here – units on diagonal and other elements 
are zeroes 

( )

( )

1/ 2

0 0

1/ 2

0 0

1

2

1

2

I Y V
V Z I

a Z V Z I

b Z V Z I

−

−

= ⋅
= ⋅

= ⋅ + ⋅

= ⋅ − ⋅



Finding columns of S-matrix
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To find elements of a column 1 for instance:
1.Launch incident wave into port 1 and terminate all ports 
with the normalization impedances
2.Measure reflected waves at all ports
3.The ratios of reflected waves and incident wave at port 1 
produces one column of matrix S
4.Repeat for all ports to fill S

All possible reflected waves are defined by linear 
combination of columns of S (they are in the column-
space of S)

S is the matrix of scattering parameters 

Waves can be measured at any location along line and re-computed to the ports!

,1

1 0 1k

i
i

a k

b
S

a
= ≠

=

1I

1V -
+

01Z

2I

2V -
+

02Z

�I

�V -

+

0�Z

[ ]S.

.

.

1a

1b

2
0a =

2b

0�a =

�b

+-

1I

2I

�I

Port 1

Port 2

Port N
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S-parameters definitions for 2-port model

2

1
1,1

1 0a

b
S

a
=

=

( ) ( )2 2

, , ,Re Imi j i j i jS S S= +

1,1 1,21 1

2 2,1 2,2 2

S Sb a

b S S a

    = ⋅        

2

2
2,1

1 0a

b
S

a
=

=
0i iv Z a+ = ⋅

0i iv Z b− = ⋅

1I

1V

0Z

[ ]S
1a

1b

2I

2V

0Z

2b

i i iV v v+ −= +

( )
0

1
i i iI v v

Z

+ −= −

2

i iP a+ =
2

i iP b− =
2

2 1 1
1,1 2

11

b P
S

Pa

−

+
= =

2
2 2 2

2,1 2

11

b P
S

Pa

−

+
= =

( ), ,20 logi j i jdB
S S= ⋅

reflection 
parameter

transmission 
parameter

power of incident wave

power of reflected wave

voltage of incident 
wave

voltage of reflected 
wave

total voltage

total current

magnitude

magnitude in dB

( ) ( )( ), , ,arctan Im Rei j i j i jS S S∠ = phase

Port 1 Port 2

1,2; 1,2;i j= =

Magnitude is limited by 1 for passive systems!



General properties of S-parameters
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� Any multiport can be characterized with the scattering 

parameters (even radiation can be included)

� Does not require static definition of current and voltage -

waves can be defined as projections on eigen-waves of 

a wave-guiding structure (wave channels)

� S-parameters can be extracted from electromagnetic 

simulation or measured at any frequency including DC

� S-parameters are free from singularities and magnitude 

is bounded by 1 for passive systems

� Easy to create macro-models due to the boundedness



Reciprocity
� Linear circuits with reciprocal materials are reciprocal according to Lorentz’s 

theorem of reciprocity: 

Reflected wave measured at port 2 with incident wave at port 1 is equal to 

reflected wave measured at port 1 with the same incident wave at port 2

� In general it means that the scattering matrices are symmetric
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, ,

t

i j j iS S or S S= =

1,2b S a= ⋅2,1b S a= ⋅
2,1 1,2S S=

1I

1V

01Z

2I

2V

02Z [ ]S

a

1b

2 0a =

b

1I

2I

1I

1V

01Z

2I

2V

02Z [ ]S

1 0a =

b

a

2b

1I

2I

at all frequencies



Reciprocity estimation and enforcement
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, ,

,

1
i j j i

i js

RM S S
�

= −∑

Reciprocity measure can be computed as mean difference between 

elements that have to be equal (at each frequency point):

RM is compared with a threshold: if RM > threshold, the multiport is reported as not 

reciprocal

( ), , , ,0.5j i i j i j j iS S S S= = +

Averaging can be used to “enforce” the reciprocity (works only with noisy data):

or max singular value of              can be used 
tS S−

Example of S-parameters of reciprocal 4-port interconnect (symmetric matrix):

1,1 1,2 1,3 1,4

1,2 2,2 2,3 2,4

1,3 2,3 3,3 3,4

1,4 2,4 3,4 4,4

S S S S
S S S S

S
S S S S
S S S S

 
 

=  
 
 

2

1 3

4
[S] RM=0



Passivity

� Power transmitted to multiport is a difference of 

power transmitted by incident and 

reflected waves:

or

Transmitted power is defined by Hermitian quadratic form 

and must be not negative for passive multiport for any 

combination of incident waves

� Quadratic form is non-negative if eigenvalues

of the matrix are non-negative (Golub & Van 

Loan):
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1I

1V -
+

01Z

2I

2V -
+

02Z

�I

�V -

+

0�Z

[ ]S.

.

.

1a

1b

2a

2b

�a

�b

+-

+-

+-

1I

2I

�I

Port 1

Port 2

Port N

2 2 * *

1

| | | |
�

in n n

n

P a b a a b b
=

 = − = ⋅ − ⋅ ∑
* * * * *

inP a a a S S a a U S S a = ⋅ − ⋅ ⋅ = ⋅ − ⋅ 

* 0eigenvals U S S − ⋅ ≥ 
* 1eigenvals S S ⋅ ≤  (U is unit matrix)

Condition is sufficient only if satisfied at all frequencies from DC to infinity



More on passivity

� Maximal singular value of S can be used for passivity estimation:

� Passivity of symmetric S can be estimated with eigenvalues as

� Lossless reciprocal system – matrix S is unitary:

� Common mistake is to estimate passivity as:
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* * 0inP a U S S a = ⋅ − ⋅ = 
*S S U=

2

,

1

1
�

i k

k

S
=

=∑ *

, ,

1

0
�

i k k j i j
k

S S
≠

=

⋅ =∑

2

,

1

1
�

i k

k

S
=

≤∑

( ) 1eigenvals S ≤

or , 1i kS ≤ This is necessary but not sufficient condition!

( )*

max 1, , , 0i i i i ieigenvals S S Rσ σ λ λ λ λ≤ = = ⋅ ∈ ≥

singular values of symmetric matrices are equal to 
the magnitudes of the eigenvalues

non-zero singular values of S are square roots of 
eigenvalues of S*S (Golub & Van Loan)



Passivity estimation and enforcement

� Passivity conditions for S-parameters (energy dissipation condition):
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*( ) 0eigenvals U S S− ⋅ ≥
*( ) 1eigenvals S S⋅ ≤

*max ( )PM eigenvals S S = ⋅ 

Passivity measure can be computed at each frequency point as:

PM is compared with a threshold: if PM > threshold, the multiport is 
reported as not passive

Normalization at each frequency point can used to “enforce” the 
passivity (works only with minor violations):

1.0 p

p

S
if PM S

PM
else S S

> ⇒ =

=

is equal to max singular value of S



Example: Terminator, one-port
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z is a complex impedance
1
I

1
V z

1I

0
Z a

1b

Alternatively we can transform Z into S with

Passivity:

1,1 1S ≤

( )

( )

1 1 0 1

0

1 1 0 1

0

1 1

1

2

1

2

a V Z I
Z

b V Z I
Z

V z I

= + ⋅

= − ⋅

= ⋅

0
1 1

0

z Z
b a

z Z

−
= ⋅

+

Reflection parameter is equal to 
the reflection coefficient

( )Re 0z ≥
For real normalization 
impedance

( ) ( ) 1 1/ 2 1/ 2

0 0
,

� � �
S Z U U Z Z Z Z Z

− − −= − ⋅ + = ⋅ ⋅

0
1,1

0

z Z
S

z Z

−
=

+

Short-circuit:

1,10 1z S= ⇒ = −

1,1 1z S= ∞ ⇒ =
Open-circuit:

1 1S C ×∈

Always satisfied for nets 
composed of R,L,C



Example: T-circuit, two-port
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z1, z2, z3 are 
complex 
impedances

1 3 3
3 2 3

z z z
Z

z z z
+ = +  

[ ] 1eigenvals S ≤Passivity:

S is always symmetric (reciprocal system) and non-singular

0Z 1a

1b

0Z2a

2b

1I

1V

2I1z 2z

3z 2V

We just use known Z and transform it to S

0

1 1 3 3
3 2 3�

z z z
Z

z z zZ

+ = +  

( ) ( ) ( )
( )

2
1

0 0 0
2

0 0 0

1 1 2 2 3

2 3 1 2� �

Z z z Z B z Z
S Z U U Z

z Z Z z z Z BA

−  − + − ⋅ + ⋅ ⋅
= − ⋅ + =  ⋅ ⋅ − − − ⋅ + 

1 2 2 3 1 3B z z z z z z= ⋅ + ⋅ + ⋅( )2

0 01 2 2 3A Z z z z Z B= + + + ⋅ ⋅ +

2 2S C ×∈

Always satisfied for nets composed of R,L,C



Example: PI-circuit, two-port
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y1, y2, y3 are 
complex 
admittances

1 3 3
3 2 3

y y y
Y

y y y
+ − = − +  

0Z 1a

1b

0Z2a

2b

1I

1V

2I

2V
1y

3y

2y

[ ] 1eigenvals S ≤Passivity:

We just use known Z and transform it to S

( ) ( ) ( )
( )

2
1

0 0 0
2

0 0 0

1 1 2 2 3

2 3 1 2� �

Y y y Y B y Y
S U Y U Y

y Y Y y y YA

−  − − ⋅ − ⋅ ⋅
= − ⋅ + =  ⋅ ⋅ + − ⋅ 

1 2 2 3 1 3B y y y y y y= ⋅ + ⋅ + ⋅( )2

0 01 2 2 3A Y y y y Y B= + + + ⋅ ⋅ +

0

1 3 3
3 2 3�

y y y
Y Z

y y y
+ − = ⋅ − +  

0

0

1
Y

Z
=

2 2S C ×∈

S is always symmetric (reciprocal system) and non-singular

Always satisfied for nets composed of R,L,C



One-conductor line segment
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1I

1
V

0Z

1 1,Z Γ

1a

1b

2I

2V

0Z2a

2b

l

( ) ( ) ( )
( ) ( )
1 1

1 11

1
,

cth l csh l
Y l

csh l cth lZ
ω

Γ ⋅ − Γ ⋅ 
=  − Γ ⋅ Γ ⋅ 

( ) ( )
( ) ( )
1 10

1 11

�

cth l csh lZ
Y

csh l cth lZ

Γ ⋅ − Γ ⋅ 
=  − Γ ⋅ Γ ⋅ 

( ) ( ) ( ) 1
, � �S l U Y U Yω −

= − ⋅ + ( ) ( )
( )

2 2

1 0 1 0 1
2 2

1 0 1 1 0

1 2
,

2

Z Z Z Z csh l
S l

Z Z csh l Z ZD
ω

 − ⋅ ⋅ ⋅ Γ ⋅
=  ⋅ ⋅ ⋅ Γ ⋅ − 

( )2 2

1 0 1 0 12D Z Z Z Z cth l= + + ⋅ ⋅ ⋅ Γ ⋅

Characteristic impedance and 
propagation constant must be 
causal and positive-real

If normalization impedance is equal to the characteristic impedance of the mode, we get generalized 
modal S-matrix:

0 1Z Z= ( ) ( )
( )

1

1

0 exp
,

exp 0

l
S l

l
ω −Γ ⋅ 

=  −Γ ⋅ 

S-matrix is symmetric (S[1,2]=S[2,1]) and skew-symmetric (S[1,1]=S[2,2])

(anti-diagonal matrix)

2 2S C ×∈



Geometric mirror symmetry input to output
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1,1 1,2 1,3 1,4

1,2 2,2 2,3 2,4

1,3 2,3 3,3 3,4

1,4 2,4 3,4 4,4

S S S S
S S S S

S
S S S S
S S S S

 
 

=  
 
 

S-matrix of reciprocal 4-port: Symmetri group generator:

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

F

 
 =  
  

S-matrix must commute with F:F S S F⋅ = ⋅ ⇒
1,3 2,3 3,3 3,4 1,3 1,4 1,1 1,2

1,4 2,4 3,4 4,4 2,3 2,4 1,2 2,2

1,1 1,2 1,3 1,4 3,3 3,4 1,3 2,3

1,2 2,2 2,3 2,4 3,4 4,4 1,4 2,4

S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S

   
   

=   
   
   

It means that: 3,3 1,1 2,3 1,4

4,4 2,2 3,4 1,2

,
,

S S S S
S S S S

= =
= =

Final S-matrix of reciprocal symmetrical 4-port:

2

1 3

4

only 6 independent 
parameters

1,1 1,2 1,3 1,4

1,2 2,2 1,4 2,4

1,3 1,4 1,1 1,2

1,4 2,4 1,2 2,2

S S S S
S S S S

S
S S S S
S S S S

 
 

=  
 
 



Geometric mirror symmetry about the plane 

along the interconnects (differential nets)
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1,1 1,2 1,3 1,4

1,2 2,2 2,3 2,4

1,3 2,3 3,3 3,4

1,4 2,4 3,4 4,4

S S S S
S S S S

S
S S S S
S S S S

 
 

=  
 
 

S-matrix of reciprocal 4-port: Symmetry group generator:

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

F

 
 =  
  

S-matrix must commute with F:F S S F⋅ = ⋅ ⇒
1,2 2,2 2,3 2,4 1,2 1,1 1,4 1,3

1,1 1,2 1,3 1,4 2,2 1,2 2,4 2,3

1,4 2,4 3,4 4,4 2,3 1,3 3,4 3,3

1,3 2,3 3,3 3,4 2,4 1,4 4,4 3,4

S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S S S S S S

   
   

=   
   
   

It means that: 2,2 1,1 2,3 1,4

2,4 1,3 4,4 3,3

,
,

S S S S
S S S S

= =
= =

Final S-matrix of reciprocal symmetrical 4-port:

1,1 1,2 1,3 1,4

1,2 1,1 1,4 1,3

1,3 1,4 3,3 3,4

1,4 1,3 3,4 3,3

S S S S
S S S S

S
S S S S
S S S S

 
 

=  
 
 

2

1 3

4

only 6 independent 
parameters

See more on that in Simberian App Note#2009_01: Practical notes on mixed-mode transformations in 
differential interconnects (with experimental validation), 2009, http://www.simberian.com/AppNotes.php



Geometric symmetry estimation and 

enforcement
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, ,

,

1
i j is js

i js

GSM S S
�

= −∑

Symmetry measure can be computed as mean difference between 
elements that have to be equal (at each frequency point):

GSM is compared with a threshold: if GSM > threshold, the 
multiport is reported as not symmetric

( ), , , ,0.5is js i j i j is jsS S S S= = +

Averaging is used to “enforce” the geometric symmetry (works only 
for minor violation of symmetry):

or max singular value of                        can be used F S S F⋅ − ⋅
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Time-domain characterization of multiports

� Time-domain response of a multiport

� Multiport descriptor type defines terminations to find H:

� Pulse response matrix and frequency-domain descriptors are related:
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( ) ( ) ( ) ( ) ( ) ( )* , � �w t H t x t H t x d H t Rτ τ τ
∞

×

−∞

= = − ⋅ ⋅ ∈∫

( ) ( ) ( ) ( ) ( ) ( )( ), ( ), ,x t I t w t V t H t Z t H i Z iω ω= = = =

( ) ( ) ( ) ( ) ( ) ( )( ), ( ), ,x t V t w t I t H t Y t H i Y iω ω= = = =

( ) ( ) ( ) ( ) ( ) ( )( ), ( ), ,x t a t w t b t H t S t H i S iω ω= = = =

Impedance matrices

Admittance matrices

Scattering matrices

( ) ( ) ( )1
,

2

i t � �H t H i e d H t Rωω ω
π

∞
×

−∞

= ⋅ ⋅ ∈∫ ( ) ( ) ( ),i t � �H i H t e dt H i Cωω ω
∞

− ×

−∞

= ⋅ ⋅ ∈∫

( ),i jH t( )0jδ
tElement [i,j] of the pulse response matrix H is a response at port i 

with port j excited with the ideal Dirak pulse (unit-energy pulse)



Time and frequency domains for LTI system
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Fourier Transforms

( ) ( ) ( ) ( ) ( ) ( )( ), ( ), ,x t I t w t V t H t Z t H i Z iω ω= = = =

( ) ( ) ( ) ( ) ( ) ( )( ), ( ), ,x t V t w t I t H t Y t H i Y iω ω= = = =

( ) ( ) ( ) ( ) ( ) ( )( ), ( ), ,x t a t w t b t H t S t H i S iω ω= = = =

( )x t ( )H t

pulse response matrix
( ) ( ) ( ) ( ) ( )*w t H t x t H t x dτ τ τ

∞

−∞

= = − ⋅ ⋅∫
stimulus system response

( )x iω
( )H iω

multiport descriptor
( ) ( ) ( )w i H i x iω ω ω= ⋅

stimulus system response

Reference: S.H. Hall, H.L. Heck, 
Advanced signal integrity for 
high-speed digital designs, 
Wiley, 2009, p. 504



Realness of time-domain response

� Time-domain response must be real function of time

� It happens if                             , or if

� Conditions at zero frequency may be useful to restore the DC point: 
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( ) ( ) ( )1
,

2

i t � �H t H i e d H t Rωω ω
π

∞
×

−∞

= ⋅ ⋅ ∈∫

( ) ( )*H i H iω ω− = ( ) ( ) ( )r i
H i H i Hω ω ω= + ⋅

( ) ( )r rH Hω ω− =

( ) ( )i iH Hω ω− = −

- even function of frequency

- odd function of frequency

( ) ( )
0

0, 0 0
r

i

dH
H

d
ω

ω
ω

=

= = DC condition for all multiport parameters 



Causality of LTI system

� Time-invariant system does not change 

behavior with time

� The system is causal iff any two identical 

inputs                          produce two identical 

outputs

� The system is causal iff for any input                          

the output is

� The system is causal iff all elements of the 

time-domain pulse response matrix are

Delayed causality (for interconnects):
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( ) ( ) ( ) ( )x t w t x t w tτ τ→ ⇒ − → −

( ) ( )1 2 0,x t x t t t= <

( ) ( )1 2 0,w t w t t t= <

( ) 00x t at t t= < ( ) 00w t at t t= <

( ), 0 0i jH t at t= <

( ), , ,0 , 0i j i j i jH t at t T T= < >

P. Triverio S. Grivet-Talocia, M.S. Nakhla, F.G. Canavero, R. Achar, Stability, Causality, and Passivity 
in Electrical Interconnect Models, IEEE Trans. on Advanced Packaging, vol. 30. 2007, N4, p. 795-808. 

( ),i jH t

,i jT

Non-causal response

Delayed-causal pulse 
response



Stability and passivity in time-domain

� The system is stable if output is bounded for all bounded inputs

� A multiport network is passive if energy absorbed by multiport

for all time and all possible voltages and currents or

for all possible incident and reflected waves

� If the system is passive according to the above definition, it is also 

causal
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P. Triverio S. Grivet-Talocia, M.S. Nakhla, F.G. Canavero, R. Achar, Stability, Causality, and Passivity 
in Electrical Interconnect Models, IEEE Trans. on Advanced Packaging, vol. 30. 2007, N4, p. 795-808. 

( ) ( ) ,x t K w t M t< ⇒ < ∀ (BIBO)

( ) ( ) ( ) 0,

t

tE t V I d tτ τ τ
−∞

= ⋅ ⋅ ≥ ∀∫

( ) ( ) ( ) ( ) ( ) 0,

t

t tE t a a b b d tτ τ τ τ τ
−∞

 = ⋅ − ⋅ ⋅ ≥ ∀ ∫

( ) ( ) ( ) ( )0 00, 0 0,

t

ta t t t b b d b t t tτ τ τ
−∞

 = ∀ < ⇒ ⋅ ⋅ ≤ ⇒ = ∀ < ∫

(does not generate energy)



Causality in frequency-domain

� Condition                       for the time-domain response matrix and

leads to Hilbert transform or Kramers-Kronig relations between the 

real and imaginary parts of the frequency-domain parameters

� Real part can be derived from imaginary or vice 

versa, but it must be known from DC to infinity

2/8/2010 © 2009 Simberian Inc. 46

( ) 0 0H t at t= <

Kramers, H.A., Nature, v 117, 1926 p. 775..
Kronig, R. de L., J. Opt. Soc. Am. N12, 1926, p 547.

( ) ( ) ( ),i t � �H i H t e dt H i Cωω ω
∞

− ×

−∞

= ⋅ ⋅ ∈∫

( )
( )'

'

0'

1
, lim

H i
H i PV d PV

i

ω ε

ε
ω ε

ω
ω ω

π ω ω

∞ − +∞

→
−∞ −∞ +

 
= ⋅ = + 

−  
∫ ∫ ∫

( )
( )

( )
( )' '

' '

' '

1 1
,

i r

r i

H H
H PV d H PV d

ω ω
ω ω ω ω

π ω ω π ω ω

∞ ∞

−∞ −∞

−
= ⋅ = ⋅

− −∫ ∫

( ) ( ) ( )
( )

,

1, 0
1, 0

H t sign t H t

t
sign t

t

= ⋅
− <= >

( ) ( ){ }
( ){ } ( ){ }

( ){ }

1

2
2

H i F H t

F sign t F H t

F sign t
i

ω

π

ω

= =

= ∗

=

Derivation:



Causality estimation - difficult way

� Kramers-Kronig relations cannot be directly checked for 

the frequency-domain response known over the limited 

bandwidth

� Causality boundaries can be introduced on the base of 

the Kramers-Kronig relations to estimate causality of the 

tabulated and band-limited data sets
� Milton, G.W., Eyre, D.J. and Mantese, J.V, Finite Frequency Range 

Kramers Kronig Relations: Bounds on the Dispersion, Phys. Rev. Lett. 

79, 1997, p. 3062-3064

� Triverio, P. Grivet-Talocia S., Robust Causality Characterization via 

Generalized Dispersion Relations, IEEE Trans. on Adv. Packaging, N 3, 

2008, p. 579-593.
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Causality estimation - easy way

� “Heuristic” causality measure based on the observation that polar plot of a

causal system rotates mostly clockwise (suggested by V. Dmitriev-Zdorov)
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Plot of Re(S[i,j]) as function of 
Im(S[i,j]), or polar plot

Start frequencyEnd frequency

Rotation in complex plane is 
mostly clockwise around local 
centers

Re

Im

Causality measure (CM) can be 
computed as the ratio of 
clockwise rotation measure to 
total rotation measure in %. 

If this value is below 80%, the 
parameters are reported as 
suspect for possible violation of 
causality.

RMS error of rational 
approximation can be also used 
as causality measure



Example of non-causal response

� Measured data often exhibit non-causality due to the 

measurement noise
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Plot of Re(S[i,j]) as 
function of Im(S[i,j]), 
or polar plot

Noise makes response appear 
as non-causal!

Re

Im

Electromagnetic models with 
non-causal dielectric models 
will be reported as causal 
with “rotation” approach

Filtering or decimating can be 
used to reduce the noise (see 
backup slides)



Causality improvement

� Filtration or decimation – may further degrade response quality

� Artificially extend real or imaginary part, or magnitude of the 

frequency response to DC and to the infinity and restore the other 

part with the Kramers-Kronig equations

� The restored part will strongly depend on the artificial extension

� Iterative extension adjustment is possible to improve accuracy over the 

sampled frequency band - difficult to implement

� Fit the response with causal rational basis functions (rational 

compact model)

� Provides controlled accuracy over the sampled frequency band

� Response from DC and to infinity in frequency-domain

� Consistent results in both frequency and time domains
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Rational Compact Models (RCM)
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*

, ,

, , *
1 , ,0

*

, ,

, , *
1 , ,0

Impedance parameters:

,

Admittance parameters:

,

ij

k

k

�

ij n ij ni
i j i j ij ij

nj ij n ij nI k j

�

ij n ij ni
i j i j ij ij

nj ij n ij nV k j

r rV
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Properties of RCM for S-parameters

� Pulse response is real and delay-causal

� Stable 

� Passive if

� Reciprocal if
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What are RCMs for?

� Improve quality of tabulated Touchstone models

� Fix minor passivity and causality violations

� Interpolate and extrapolate with guarantied passivity

� Produce broad-band SPICE models (see backup slides)

� Much smaller model size

� No artifacts and guarantied stability of SPICE simulation

� Consistent frequency and time domain analyses

� Compute time-domain response of a channel with a fast 

recursive convolution algorithm (exact solution for PWL 

signals)
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� If no DC point, the lowest frequency in the sweep should be

� Below the transition to skin-effect (1-50 MHz for PCB applications)

� Below the first possible resonance in the system

(important for cables, L is physical length)

� The highest frequency in the sweep must be 

defined by the required resolution in time-domain 

or by spectrum of the signal (defined by rise time)

� The sampling is very important for IFFT and convolution-

based algorithms, but not so for algorithms based on fitting

� There must be 3-4 frequency point per each resonance

� The electrical length of a system should not change more than 

quarter of wave-length between two consecutive points

Bandwidth and sampling to build RCM
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Outline

� Introduction

� Matrices

� Multiport characterization in frequency-domain

� Multiport characterization in time-domain

� Rational macro-models as the common base

� Global quality metrics in frequency domain

� Practical examples



Summary: Frequency-dependent or local 

quality metrics for S-parameters

� Reciprocity:

� Passivity:

� Geometric Symmetry:
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Global quality metrics (0-100%)

� Passivity Quality Measure: PQM or zero if PQM<0

� Reciprocity Quality Measure: RQM or zero if RQM<0

� Geometric Symmetry Quality Measure: SQM or zero if SQM<0

� Causality Quality Measure: Minimal ratio of clockwise rotation 

measure to total rotation measure in %

� RMS error of the rational compact model can be also used as the 

quality or causality measure
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Part II: Practical examples

� Teraspeed’s PLRD-1 (SOLT&TRL)

� Samtec’s connectors and test-boards

�Q
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Microwave signal integrity software

�ADS from Agilent Technologies

�Ansoft Designer SI

�AWR’s SI Design Suite

�Simbeor from Simberian
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Backup slides

� Linear algebra 101

� Examples of Y,Z and S-parameters for simple 

multiports

� Generalized theory of multi-conductor 

transmission lines

� Smoothing data

� RCM building algorithm

� Broad-band SPICE model
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Matrices and vectors

� Column-vector is an array with m rows 

and 1 column

Example of complex column-vector

� Row-vector is an array with

1 row a and n columns

Example of complex row-vector  

� m by n matrix is an array with m rows and n columns - for multiport 

applications the elements are complex numbers or functions of 

frequency in general

Example of complex matrix 4 by 4

� Vector norm is the measure of vector magnitude

Example of Euclidian norm

2/8/2010 © 2009 Simberian Inc. 66

1,1 1,2 1,3 1,4

4 42,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

,

A A A A
A A A A

A A C
A A A A
A A A A

×

 
 

= ∈ 
 
 

1

4 12

3

4

,

c
c

c c C
c
c

×

 
 = ∈ 
  

[ ] 1 4

1 2 3 4, , , ,r r r r r r C ×= ∈

c

r

2

2
1

�

i

i

x x
=

= ∑



Products

� Vector times a scalar:

� Matrix times a vector:

is a linear combination of 

the columns of A:

� Matrix times matrix              - each column of B is a linear 

combination of the columns of A
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More of familiar definitions

� Linearity:

� Two non-zero vectors are linearly independent if

� Rank of matrix A is the dimension of the column space of A, or 

number of linearly independent columns of A

� Range of matrix A is the set of vectors that can be expressed as Ax

for all x from the domain-space

� The range is the space spanned by the columns of A

� Matrix A can be inverted if it is N by N and rank(A)=N (non-singular 

or full rank matrix):

a is vector of coefficients of unique linear expansion of b in the basis 

of columns A
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Example: Terminator, one-port
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Example: Series impedance, two-port
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Example: Parallel impedance, two-port
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Example: Series impedance, two-port
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Example: Parallel impedance, two-port
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Example: Ideal 3-dB attenuator
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Transmission line description with 

generalized Telegrapher’s equations

( ) ( ) ( )

( ) ( ) ( )

V x
Z I x

x

I x
Y V x

x

ω

ω

∂
= − ⋅

∂
∂

= − ⋅
∂

( ) ( ) ( )Z R i Lω ω ω ω= + ⋅

( ) ( ) ( )Y G i Cω ω ω ω= + ⋅

I – complex column-vector of N currents

V – complex column-vector of N voltages

Z [Ohm/m] and Y [S/m] are complex NxN matrices of 
impedances and admittances per unit length

1 2
N

Plus boundary conditions at the ends 
of the segment

R [Ohm/m], L [Hn/m] – real NxN frequency-dependent matrices of resistance and 
inductance per unit length

G [S/m], C [F/m] – real NxN frequency-dependent matrices of conductance and 
capacitance per unit length
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Transformation to modal space

( ) ( )1

I Vy M Y Mω ω−= ⋅ ⋅

( ) ( )1

V I
z M Z Mω ω−= ⋅ ⋅

Matrices of impedances and admittances per unit length are 
transformed into diagonal form with the current MI and voltage 
MV transformation matrices (both are frequency-dependent)

( ) ( ) ( )Z R i Lω ω ω ω= + ⋅

( ) ( ) ( )Y G i Cω ω ω ω= + ⋅

Per unit length matrix parameters (NxN complex matrices)

Symmetric in case of linear isotropic materials

t t

I V V IW M M M M= ⋅ = ⋅

*t

V IP M M= ⋅

Matrix W is diagonal for the reciprocal systems because of Z and
Y must stay symmetric during the modal tranformation

Complex power transferred along the line (may be fully 
populated)

V

I

V M v
I M i

= ⋅
= ⋅

Definition of terminal voltage and current vectors through modal voltage 
and current vectors and modal transformation matrices

( ) ( ) V VZ Y M Mω ω⋅ ⋅ = Λ ⋅

( ) ( ) I I
Y Z M Mω ω⋅ ⋅ = Λ ⋅

Eigen-vectors of ZY and YZ  are actually the modes of the line 
– they can be used to form current MI and voltage MV

transformation matrices
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Waves in multi-conductor t-lines

ni
nv
+

nv
−+

nv -

Current and voltage of 
mode number n (n=1,…,N)

Voltage waves for mode 
number n (n=1,…,N)

( ) ( ) ( )

( ) ( ) ( )
0

exp exp

1
exp exp

n n n n n

n n n n n

n

v x v x v x

i x v x v x
Z

+ −

+ −

= ⋅ −Γ ⋅ + ⋅ Γ ⋅

 = ⋅ −Γ ⋅ − ⋅ Γ ⋅ 

( ) ( ) ( )0 , ,n n n n nZ z yω ω ω=

( ) ( ) ( ), ,n n n n nz yω ω ωΓ = ⋅

x x

Modal complex characteristic impedance and 
propagation constant

V

I

V M v
I M i

= ⋅
= ⋅

Voltage and current in multiconductor line can be expressed 
as a superposition of modal currents and voltages

Passivity:

( )( )0Re 0nZ ω ≥

( )( )Re 0n nα ω= Γ ≥

2

0
2

0

n

n

n

n

n

n

v
P

Z

v
P

Z

+

+

−

−

=

=
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One and two-conductor lines

( ) ( ) ( )0Z Z Yω ω ω=

( ) ( ) ( )Z Yω ω ωΓ = ⋅
1V IM M= =

1 1 1

1 12
V I eoM M M

 = = =  − 

Symmetric two-conductor case – even and odd mode normalization

One-conductor case

( )eo eo eoy M Y Mω= ⋅ ⋅

( )eo eo eoz M Z Mω= ⋅ ⋅

( ) 2,2 2,2even eo eoZ z yω =

( ) 1,1 1,1odd eo eo
Z z yω =

( )1

mm Imm Vmmy M Y Mω−= ⋅ ⋅

( )1

mm Vmm Imm
z M Z Mω−= ⋅ ⋅

1 0.5 0.5 1
,

1 0.5 0.5 1V Vmm I ImmM M M M
   = = = =   − −   

( ) 2,2 2,2common mm mmZ z yω =

( ) 1,1 1,1differential mm mmZ z yω =

Common and differential mode normalization

0.5common evenZ Z= ⋅

2differential oddZ Z= ⋅

( ) 2,2 2,2even eo eoz yωΓ = ⋅

( ) 2,2 2,2odd eo eoz yωΓ = ⋅

common evenΓ = Γ

differential oddΓ = Γ

+   +
+    -



2/8/2010 © 2009 Simberian Inc. 79

Admittance parameters of multiconductor 

line segment

l

1V

2N x 2N three-diagonal admittance matrix of 
the line segment in the modal space

2N x 2N admittance matrix of the line segment in 
the terminal space – symmetric in case of 
reciprocal system

( )

( ) ( )

( ) ( )
0 0

0 0

,

n n

n n

n n

n n

cth l csh l
diag diag

Z Z
Y l

csh l cth l
diag diag

Z Z

ω

 Γ Γ   
−    

    =
Γ Γ    

−    
    

%

( ) ( )
1

1

00
, ,

0 0
VI

I V

MM
Y l Y l

M M
ω ω

−

−
  = ⋅ ⋅      

%

1 2
N

N+1
2N

Y

1

2

N

N+1

N+2

2N

1I

2V

2I

( )1 1

2 2

,
I V

Y l
I V

ω
   

= ⋅   
   

Admittance matrix leads to a system of linear equations 
with voltages and currents at the external line terminals

t t

I V V IW M M M M= ⋅ = ⋅

( )( )Re , 0eigenvals Y lω  ≥ The most general passivity condition (reciprocal system):

( )( ) ( )( )Re 0, Re 0eigenvals Z eigenvals Yω ω   ≥ ≥   
To have real-positive characteristic 
impedances and propagation constants:
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Scattering parameters of 

multiconductor line segment

( )1/2 1/2

0 0,�Y Z Y l Zω= ⋅ ⋅

( ) ( ) ( ) 1
, � �S l U Y U Yω −

= − ⋅ + S-matrix of the line segment is computed as the 
Cayley transform of the normalized Y-matrix

Normalization matrix is diagonal matrix with 
normalization impedances on the diagonal

1I

1V

0Z

2I

2V

0Z

�I

�V

0Z

[ ]S

1a

1
b

2a

2b

�a

�
b

1�I +

1�V +

0Z

2�I +

2�V +

0Z

2�I

2�V

0Z

1�a +

1�b +

2�a +

2�b +

2�a

2�b

[ ]Y

( )1 1

2 2

,
I V

Y l
I V

ω
   

= ⋅   
   

( )1/2

1,2 0 1,2 0 1,2

1

2
a Z V Z I−= ⋅ + ⋅

( )1 1

22

,
b a

S l
ab

ω
   = ⋅     

( )1/2

1,2 0 1,2 0 1,2

1

2
b Z V Z I−= ⋅ − ⋅

Vectors of 
incident waves

Vectors of 
reflected waves

Admittance 
parameters (known)

Scattering 
parameters

2 2� �S C ×∈
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Simple strip-line segment example

8-mil strip, 20-mil plane to plane distance, DK=4.2, LT=0.02 
at 1 GHz, wide-band Debye dielectric model. 

Strip is made of copper, planes are ideal, no roughness, no 
high-frequency dispersion.

[ ]1,120log ,S dB [ ]2,120log ,S dB−

Frequency, Hz Frequency, Hz

Infinite line

5-inch line

Normalized 
to 50-Ohm

Normalized to characteristic 
impedance (ideal termination)

5-inch line segment

1I

1
V

0Z

1 1,Z Γ

1a

1b

2I

2V

0Z2a

2b

l



Smoothing data with FIR filter

� Moving average FIR (boxcar) filter is used to smooth the data

� It may be helpful in case of noisy oversampled data (small phase difference 

between consecutive frequency points)

� Cannot be used if data are just sufficiently sampled or under-sampled

� Example of data before and after filtration:
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S[1,2] after TRL de-embedding
After noise filtration with FIR 
order 16



How RCMs are constructed?

1. Delay is extracted if possible

2. Number of poles and their locations are guessed

3. Linear system is constructed from the rational approximation:

4. The linear system size is 2*Ns x 2Np+2 – solved with LQ-decomposition
2Np+2 unknown residues require Ns number of samples Ns>=2Np+2 assuming all poles are complex

5. Zeroes of the auxiliary function become new poles (only with negative real part)

6. Residues are found solving the system

7. Items 3-6 are repeated until convergence 

criterion is satisfied (soft relocation)
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( )

*

*
1

*

*
1

1

p

p

�

n n

n n n

�

n n

n n n

c c
d h s

s p s p
H s

c c

s p s p

=

=

+ ⋅ + −
− −

=

+ −
− −

∑

∑
% %

Details of the vectfit (or Sanathanan-Koerner) procedure are in B. Gustavsen, A. Semlien, 
Rational approximation of frequency domain responses by vector fitting, IEEE Trans. on Power 
Delivery, v. 14, 1999, N3, p. 1052-1061.

, ,
( ),

,

( ),
( ),

( )

p

n

n

n

s i frequency d valueat
h asymptote zero for S parameters
� number of poles

p poles real or complex
c residues unknown
c auxiliary residues unknown

ω= − − ∞
− −

−
−
−
−%

( )
*

*
1

1
p�

n n

n n n

c c
s

s p s p
σ

=

= + −
− −∑
% %

( )
*

*
1

p�

n n

n n n

r r
H s d h s

s p s p=

 
= + ⋅ + + − − 

∑



Converting RCM into a SPICE model
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*

, ,

, *
1 , ,

ij

ij

�
s Tij n ij n

i j ij

n ij n ij n

r r
S d e

s p s p

− ⋅

=

  
= + + ⋅   − −   

∑

1I

1V -
+

01Z

2I

2V -
+

02Z

�I

�V -

+

0�Z

.

.

.

1a

1b

2a

2b

�a

�b

+-

+-

+-

1I

2I

�I

Port 1

Port 2

Port N

[ ]S

( ) ( )0 0

0 0

1 1
,

2 2
a V Z I b V Z I

Z Z
= + ⋅ = − ⋅

bi as current

aj as voltage

,

0

,

k

i
i j

j a k j

b
b S a S

a
= ≠

= ⋅ = scattering matrix

waves

Simple and LAPLACE VCCS can be used to represent each element of the S-matrix 
rational approximation with VCVS for the delay element

First published in: J. De Geest, S. Sercu, C. Clewell, J. Nadolny, Making S-parameters suitable for SPICE modeling, -
DesignCon2004.  
Also in: N. Stevens, T. Dhaene, Generation of rational model based SPICE circuits for transient simulations, - SPI2008.

Sij as voltage-
controlled current 
sources

can be also treated as:

0

0 0

0

1
2

22

i

i i i i i i i i

i

Z
b V I V Z I Z b

Z
= − ⋅ ⇒ = ⋅ + ⋅

0

,

10

1
,

22

�
i

i i i i i j j

ji

Z
a V I b S a

Z =

= + ⋅ = ⋅∑



Broad-band SPICE circuit
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02bi i iH Z b= ⋅
i
V

iI 0iZ

ref

pi

0

1

2
Vi i

i

E V
Z

= ⋅ ia

ib

ref

0

2

i

Ii i

Z
H I= ⋅

1 1 1i iG S a= ⋅
2 2 2i iG S a= ⋅ ij ij jG S a= ⋅

ref

0

ij ij jG d a= ⋅
*

, ,

*

, ,

ij n ij ncn

ij j

ij n ij n

r r
G a

s p s p

 
= + ⋅  − − 

,

,

2 ij nrn

ij j

ij n

r
G a

s p

⋅
= ⋅

−

0 02i i i i iV Z I Z b= ⋅ + ⋅
0

0

1

22

i

i i i

i

Z
a V I

Z
= + ⋅ ,

1

�

i i j j

j

b S a
=

= ⋅∑

*

, ,

, *
1 , ,

ij�

ij n ij n

i j ij

n ij n ij n

r r
S d

s p s p=

 
= + +  − − 

∑

Multiple VCCSs 
in parallel

Real poles
Complex poles

Just circuit for a port number i is 
shown here – similar circuits are 
used for all ports of a multiport

Delay element is not shown here –
it is implemented as VCVS with 
delay loaded by a dummy resistor


